# Shape Gradients & Tolerances

Maria Garmonina Paul Group, Columbia University



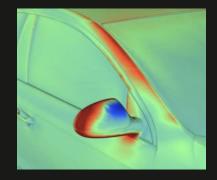
# Motivation

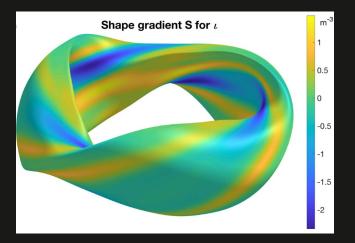
 Which configuration would maximize tolerances for crucial parameters? Create algorithms to compute shape gradients and tolerances to be applied in stellarator optimization and design

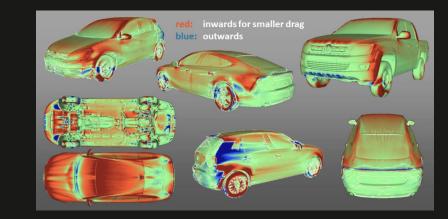
- Where should we put coil supports?
- Where should magnetic material be located?

# Why Is It Useful?

- Automotive industry (drag sensitivity)
- Aerospace industry (structural integrity)
- Civil engineering (structural optimization)
- Stellarator optimization and design!







### What Is Shape Gradient?

#### For coil functionals:

$$\delta f = \sum_k \int \mathrm{d}\ell \, oldsymbol{S}_k \cdot \, \delta oldsymbol{r},$$
 $\int_0^{2\pi} \mathrm{d}artheta \left| rac{\mathrm{d}oldsymbol{r}}{\mathrm{d}artheta} 
ight| rac{\partialoldsymbol{r}}{\partial p_j} \cdot oldsymbol{S} = rac{\partial f}{\partial p_j}$ 

- Gives the local differential contribution to some sclar figure of merit caused by normal displacements
- Can be computed from derivatives w.r.t. shape parameters for appropriate figures of merit
- Provides spatially local information

#### What Is Tolerance?

$$T_k(\ell) = rac{w_k(\ell) \Delta f}{\sum_{k'} \int \mathrm{d}\ell' w_{k'}(\ell') | \mathbf{S}_{k'}(\ell') |}$$

Can be computed from shape gradients
Local / uniform

$$w_k = |m{S}_k|^{-lpha}$$
  $w_k = 1$ 

### **Problem Description**

| $\sum_{m=0}^{ m order} x_{c,m} \cos(2\pi lm) +$ | $+\sum_{m=1}^{\mathrm{order}} x_{s,m} \sin(2\pi lm)$ |
|-------------------------------------------------|------------------------------------------------------|
| $\sum_{m=0}^{ m order} y_{c,m} \cos(2\pi lm) +$ | $\sum_{m=1}^{	ext{order}} y_{s,m} \sin(2\pi lm)$     |
| $\sum_{m=0}^{ m order} z_{c,m} \cos(2\pi lm) +$ | $\sum_{m=1}^{	ext{order}} z_{s,m} \sin(2\pi lm)$     |

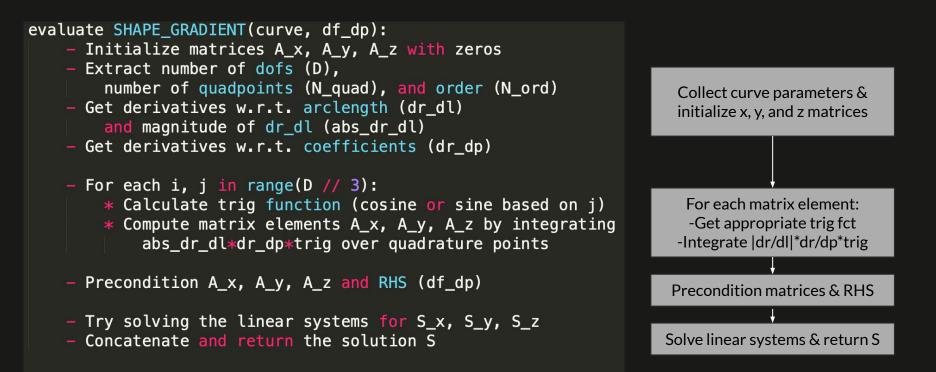
- Given a curve and a figure of merit, compute the shape gradient (constrained vs unconstrained)
- Using the shape gradient, evaluate uniform and local tolerances

$$dofs = [x_{c,0}, x_{s,1}, x_{c,1}, \cdots, x_{s, ext{order}}, x_{c, ext{order}}, y_{c,0}, y_{s,1}, y_{c,1}, \cdots$$

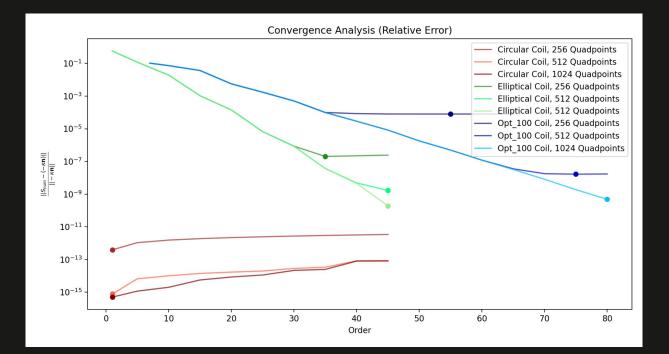
$$\int_0^1 \left| rac{\mathrm{d} \mathbf{r}}{\mathrm{d} l} 
ight| rac{\partial \mathbf{r}}{\partial p_j} \cdot \mathbf{S} \mathrm{d} l = rac{\partial f}{\partial p_j}$$

$$T(l) = rac{w(l)\,\Delta f}{\int w(l') |S(l')| dl'}$$

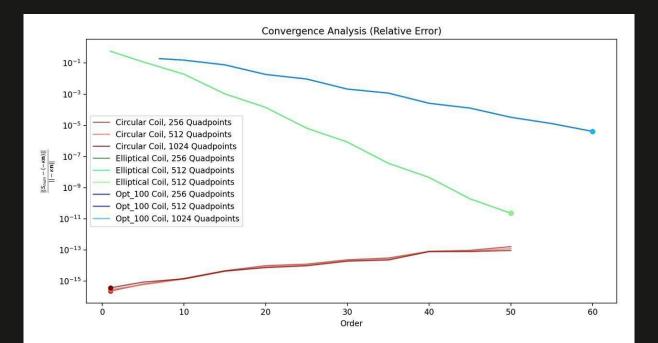
#### Pseudocode (for Unconstrained Curve)



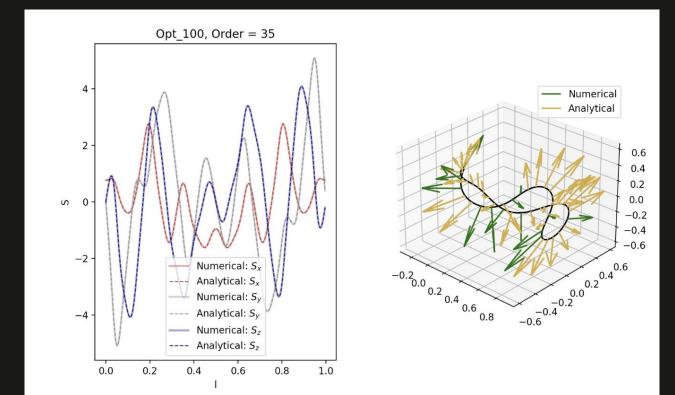
# Performance: f=CurveLength Algorithm Using Interpolation + Adaptive Quadrature



# Performance: f=CurveLength Algorithm Using Periodicity of Curve Representation



#### Performance: f=CurveLength



#### Performance: f=NonQSRatio

